Application of mathematical radon transformations to describe acoustic wave propagation in continuum environments

Authors

DOI:

https://doi.org/10.5281/zenodo.7699471

Keywords:

acoustic wave, continuum environments, Radon transform, devices, mathematical model

Abstract

The paper investigates the application of mathematical Radon transformations to describe the propagation of acoustic waves in continuum environments. It is shown that these transformations make it possible to analytically take into account many factors that affect the propagation of acoustic waves. It also takes into account the properties of objects that reflect it. This version of the description can be used as a generalized mathematical model, which is considered as a spherically symmetric function from the distance to the source of coherent waves, described by the Radon transform.

Downloads

Download data is not yet available.

References

] Azarenko Y.V, Goncharenko Y.Y., Divzinyuk M.M. (2012). Modeli rasprostraneniya antropogennoy primesi v Chernom more. Monografiya. Sevastopolʼ: SNUYAEiP, 93 p. ISBN-978-966-8962-05-9. [in Ukrainian].

] Tatarskiy V.I. (1959). Teoriya fluktuatsionnykh yavleniy pri rasprostranenii voln v turbulentnoy atmosphere.Monografiya. Moscow: Akademiya Nauk, 282 p. [in Russian].

] Azarenko Ye.V. (2003). Akusticheskoye obnaruzheniye obʼyektov v vodnoy srede. Sevastopolʼ: Gos. okeanarium, 71 p. ISBN-966-96-287-3-3. [in Ukrainian].

] Yevtyutov A.P., V.B. Mitʼko. (1988). Primery inzhenernykh raschetov v gidroakustike. Leningrad: Sudostroyeniye. 288 p. [in Russian]

] Divizinyuk M.M., Yeremenko S.A., Lyeftyerov O.A., Prusʹkyy A.V., Strilets V.V., Strilets V.M., Shevchenko R.I. (2022). Teoretychny zasady paradyhmy “tsyvilʹnyy zakhyst”. Monohrafiya. Kyiv.: TOV “AZYMUT-PRINT”. 335 p. ISBN 978-617-8015-20-6. [in Ukrainian].

] Kucherova H., Didenko A., Honcharenko Y., Kravets 0., Uchitel A. (2020). Scenario Forecasting Information Transparency of Subjectsʼ under Uncertainty and Development of the Knowledge Economy. CEUR Workshop Proceedings. Cep. “M3E2-MLPEED 2020 – Proceedings of the Selected Papers of the Special Edition of International Conference on Monitoring, Modeling and Management of Emergent Economy”. pp. 81-106.

] Honcharenko Y., Martyniuk О., Openʼko P., Radko О. (2020). The Method of Proactive Risk Assessment for Flight Safety Based on the Rate of Dangerous Events. Advances in Military Technology. T. 15. № 2. pp. 365-377.

] Louis A.K. (1981) Analytische Methoden in der Computer Tomographie. – Habilitationsschrift: Fachebereich Mathematik der Universitet Munster.220 p.

] Tikhonov A.N., Arsenin V.Y, Timonov A.A. (1987). Matematicheskiye zadachi komp'yuternoy tomografii. Moscwa: Nauka, 161 p.

] Divizinyuk M.M. (1998). Akusticheskiye polya Chernogo moray.Monografiya. Sevastopol': Gos. Okeanarium, 352 p. ISBN-966-06-0619-4

] Bulatsyk O.O., Voytovych M.M., Katsenelenbaum B.Z. (2012). Fazovi optymizatsiyni zadachi zastosuvannya v teoriyi khvylʹovykh poliv. dr. Kyiv: Naukova dumka, 320 p.

] Doronin Y.P. (1978). Fizika okeana. Leningrad: Gidrometeoizdat, 286 p.

] Grinchenko V.T., Vovk I.V., Matsipura V.T. (2013). Volnovyye zadachi akustiki, Kyiv: Interservis, 572 p.

] Mit'ko V.B. Yevtyutov, A.P. Gushchin S.Ye. (1982). Gidroakusticheskiye sredstva svyazi i nablyudeniya. Monografiya Leningrad: Sudostroyeniye,. 197 s.

] Honcharenko Y.Y. (2014). Fyzycheskaya modelʹ sʺema rechevoy ynformatsyy /. Zbirnyk naukovykh pratsʹ “Systemy obrobky informatsiyi”. Kharkiv: Kharkivsʹkyy universytet Povitryanykh Syl imeni Ivana Kozheduba, Vyp. 7 (123). pp. 18-23.

] Natterer F. (1984) Some nonstandard Radon problems. Teubuer: Application of Mathematics in Technology, 343 p.

Downloads


Abstract views: 21
Downloads: 19

Published

2022-06-30

How to Cite

Azarenko, O., Honcharenko, Y., Divizinyuk, M., Shevchenko, O., & Mogylevska, V. (2022). Application of mathematical radon transformations to describe acoustic wave propagation in continuum environments. Political Science and Security Studies Journal, 3(2), 38-44. https://doi.org/10.5281/zenodo.7699471

Issue

Section

Articles