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Abstract

The article is devoted to mathematical models of errors of inertial navigation systems (INS). The
main advantages of autonomous inertial navigation systems are their resistance to horizontal
accelerations and the ability to work autonomously under any conditions. However, over time,
the errors of autonomous INS, due to the drift of gyroscopes, zero offset and drift of
accelerometers, as well as other factors, reach significant values. Therefore, research to
compensate for these errors is an important and urgent task in the autonomous mode of
operation of the aircraft.

To establish the connection between the output and input errors of autonomous INS, the
equation of errors of autonomous INS is made. In this case, two models of errors of autonomous
INS are investigated: nonlinear and linear.

Depending on the requirement for accuracy and time of calculation of navigation parameters
choose different models of INS errors. The linear model is simpler and requires less
computational time. But the development of modern technologies allows to solve complex
problems at an acceptable time interval. Therefore, it is possible to use nonlinear models.

Key words: aircraft, inertial navigation system, error, error, correction, mathematical model,

nonlinear, linear.

Introduction

The operation of the aircraft in conditions of
active and passive interference is complicated.
Determination of navigation parameters and
orientation parameters of the aircraft is carried
out using the INS installed on board the aircraft,
which is autonomous and invariant to horizontal
accelerations. To increase the accuracy of

Results and discussion

autonomous INS with the help of mathematical
models of errors predictive models of errors of
autonomous INS are built.

The purpose of the article is to consider and
analyze the linear and nonlinear mathematical
model of INS errors.

1. Nonlinear error models of autonomous
INS. Equation of horizontal orientation errors.

In real conditions, the platform always
deviates from the navigation coordinate system
(in our case, the navigation coordinate system —
a geographical triangle) at some angles @, ®y,
®,, (see Fig. 1). These angles are called
orientation errors. The following discusses how
to identify these orientation errors.

equation is known
1971; Meleshko

The Poisson
(Giroskopicheskiye sistemy,
V.V., Nesterenko O.l., 2011):

Ch = Cho, — 0,0, (1)
where @,,, @, - skew-matrix matrices; Cl}, -

conversion matrix from coordinate system “m”
to coordinate system “n”.
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Figure 1 — Deviation angles between platform and geographical triangles

The problem considers two coordinate
systems: the platform coordinate system (is
affected “p”) and i geographical triangular (is
affected “LL”). In this case, the Poisson equation
has the form:

D _ P = = P
Crp = CpL@p, — @pCyy, (2)
where CF, — matrix of transformation from a

geographical trihedron into a platform
coordinate system:

€11 C12 (13
CLpL = |C21 Czz2 (33 (3)
C31 C32 C33
where:

€11 = cos Dy cos Dy, — sin P sin Oy sin O,y
C12 = €COS @y Sin @y, + sin @ sin Py cos Dyy,;
C13 = — €0S @ sin Py;

C21 = — CO0S @ SIn Byyyy;

Cop = €OS D cos Dy,

Cy3 = Sin @g;

€31 = SIn @y cos Gy, + sin @ cos Dy sin @yy,;
C32 = SN @y Sin Py, — SIN P SIn Py cOS Dyyyy;
C33 = €0S ®g cos Py;

and skew-symmetric matrices @, @y
acquire the form:
0 —wiy Wy
Dy, = | wip 0 —wk| . (4
—wk Wkt 01,

P p
0 —wy wy
= | .P P
By = | wyp 0 —wg| , (5)
P P
—wy g 0

p

where w!, w? - absolute angular velocities
of geographical and platform triangles. The
absolute angular velocities of a geographical
triangle are determined by formulas
(Giroskopicheskiye sistemy,1971; Bromberg P.
V., 1979; Salychev 0.S., 1998):

LL VN
wht = -2
E R
VE
Wi =2+ ucose (6)

\wks = %Etggo +using

The difference between the absolute angular
velocities w, Ta w;; caused by a calculation
error Aw;;—gnup and the drift rate of the
gyroscope wffirzE_N_up. Let £ = Aw + w? - the
sum of calculation errors and the drift rate of the
gyroscope, in this case:

Wy = Wy, + & (7)
where w{*, w!
&g Awg + 0"
g:[fzvlz Awy + oF | (8)
Eup Awyy, + 0y
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When varying equation (6), you can find

dr
A(UE - - R
Awy =6;/TE—usin(p5<p (9)
Awy, = %tg(p + (ucos @ + 1:TEsec2 P)op

R

&g Awg + 0" [
8=[€1v]= Awy + 0% | =1
Gl |Awy, + 0 [5

Similarly, for skew-symmetric matrices:

5p = (D’LL + g, (11)
where
0 —&p &n
E=|¢&up 0 —&g (12)
—&v &g 0
. vy OVy
(D = (_?_T-I_ (L)Er)COS(DN

(—tg(p+usm(p+—tg<p +ucos<p6<p+—sec 08¢ + wl ) Sin @y.

Vg 6Vvg

®N=§+uc05(p+7—usm(p6<p+a)

05 Oy,

——+ —+
( Uucos @) cos O,

calculation errors:

%—u51n<p6<p+wdr |

VN VE
= €0s DQup — (f

vy OVy

R

Substitute (9) in (8) and get:

sv
——N+a)

(10)

tgp + (ucos @ +—sec ©)6p + wl

Taking into account equation (11) we
rewrite equation (2):
(@ + CE. (13)

Substitute equations (3), (4), (10) and (12)
into equation (13) and obtain nonlinear
equations of errors of horizontal orientation:

D _ P o~
Cr, =Cp o

+ ucos @) sin @y, +

Vg ) Ovg Vg
—(Etg(p +using + Ttg(p +ucos @ dp +fsec2 PO

+wip)tg®g cos Oy,

Here: vy, Vg, Vyp projections of the
velocity of the aircraft on the axis of the
geographical trihedron; vy, §vg, vy,
projections of the velocity of the aircraft on
the axis of the geographical trihedron;
@y, @, @y, - angles of deviation between
the platform and geographic trihedra;
wi, wi", w{l, - projections of the GSP drift
velocity on the axis of the geographical

trihedron; ¢ - the latitude of the area; ¢ -

(14)
ar N Sin Qyy B
R cos @
R + W tg g sin Oy —
(15)
error determining latitude; u - angular

velocity of rotation of the Earth; R - radius of
the Earth;

Equation of
accelerometers.

To derive the error equations of horizontal
accelerometers, first consider the basic
equation of navigation.

The basic equation of inertial navigation.
In the inertial coordinate system, Newton's

errors of horizontal

57


https://portal.issn.org/resource/ISSN/2522-9842

ISSN 2719-6410

Political Science and Security Studies Journal, Vol. 2, No. 3, — 2021

second law is known (Inertsial'nyye, 2012):
d?r

mF=F, (16)

where m - the mass of the material point;
r — radius vector of the material point; F -
equal effect of all forces applied to the
material point is equal to:

F = Fym + Gr, (17)

where F,., - active non-gravity forces
acting on the point; G, — gravitational forces
acting on a point in the gravitational field of
the Earth.

Put equation (17) in (16) we get:

dZ
md—tz = Fym + Gy (18)

Let's redo equation (18) and get:

d?r _ Fam n Gr
dt? m m

or

a=f+9gm (19)

where a - absolute acceleration; f -
acceleration, measured by an accelerometer;
9m — gravitational acceleration.

Next we will consider how to use equation
(19) to determine the navigation parameters
of objects. We know the Coriolis formula:

dr

dar
I_dt

dt

+w, Xr=v+u+r, (20)

n

where the index “n” denotes the Earth's
coordinate system; v - the speed of the object

i j k

relative to the terrestrial coordinate system; u
- angular velocity of rotation of the Earth.

Integrate equation (20) with respect to the
inertial coordinate system and we obtain the
absolute acceleration of the object:

d dv dr
a —E[v+u+r]1 _E|1 +u><51. (21)
Decompose the first term of the right-

hand side of the equation (21):

__av

I_dt

dv

" +w; XV, (22)

LL

where the index “LL” denotes a
geographical trihedron.

Put equations (20), (22) in equation (21)
and obtain:

a=% +wy Xv+uXv+uxuxr.(23)
dtlyy,

Let us rewrite equation (19) taking into
account equation (23):

dv
| +w Xv+uXv+uXuXr,
L

f+gm:EL

or

i

__av
Im = 3¢

Fwy Xv+uXv+uXuXr—

+wy Xv+uxXxv—g, (24)
LL

where g = g, —u X u X r - acceleration
of gravity.

Equation (24) is the basic equation of
navigation.

Let us decompose the second and third
terms of the right-hand side of equation (24):

wp, XV =det|Wg Wy Wyp|= (wNvup - wuva)i + (wuva - wEvup)j + (wgvy — wyvp)k, (25)

Vg Uy Uyp

i j  k

uXv=det [uE Uy uup] = (UnVyp — UypUN)L + (UypVE — UpVyp)j + (UgVUy — Uy VE)k, (26)

Ve Un vup

where ug,uy,u,, - projections of the
angular velocity of rotation of the Earth on the
axes of the geographical trihedron, defined by
the formulas:

Ug = 0
Uyp = USINQ

In this case, taking into account equations
(24), (25), (26), the projection of the
accelerations of the object on the axis of the
geographical trihedron are determined by the
formulas:



https://portal.issn.org/resource/ISSN/2522-9842

ISSN 2719-6410

Political Science and Security Studies Journal, Vol. 2, No. 3, — 2021

{ _ dUE
| fE T +wN7-7up
dUN
4 fv = + WypVE —

dvup
lfup Tt T WEVUn —

Let us rewrite equation (29) in matrix form:

f=v+@v+iv+yg, (29)
where
f Ve 0 -, o
f=|fy [v=|v ;o= o, 0 - |;
f up -0, O 0
0 -u, U 0
u=lu, O -u.f;g°=0
-Uy  Ug 0 g

Due to the deviation of the gyroplatform
from the geographical trihedron at the
corners @g, Oy, @, accelerometers do not
measure the projection of accelerations along
the axes of the geographical trihedron. The
relationship between the projections of
accelerations along the axes of the
gyroplatform (“p”) and the geographical
trihedron (“LL”) is expressed by the formula:

5VN CLpL - I] — | Wup + Uyp
SVup —Wy — Uy

—Swup Swy
Swup 0 —dwg
—dwy OSwg 0

After converting expression (35), we obtain

the error  equation of  horizontal
accelerometers:

vg = _fE

Wyp VN + UnVyp

WEVyp + UypVg

— UypVy

—UpVyp - (28)

CUNUE + uEvN - quE + g

P =cl fLL + Af, (30)

where Af

includes zero offset and scale factor error).
The difference between fPand fLL can be
found by varying equation (29) and we obtain:

fP—flL = 6f = 6v + @év + Swv + udv. (31)

- accelerometer errors (this

From equation (31) it follows:
fP = fL +6f = fLL + §v + @Sv + Sov + Uéw. (32)

Let's put equation (30) in equation (32) and
get:
L+ 60 + @ov + S@v + usv = CF 1 + Af, (33)
it follows that:
§v = [Ch, —I|f'" — [@ + u]6v — &v + Af. (34)

We will decompose the equation (34):

—Wyp —Uyp Wy t+uy || Svg
0 —wg —ug|| vy | -
wg + Ug 0 SVup
LE fE Bg
+ |4y fy|+]|Bn|. (35)
.uupfup Bup

— vup(a%— using dp) + vN(a%tgq) +ucos@dp +%sec2 pop) —

% %
—8vyy(2ucos ¢ + ?E) + 6vy(2using + ?Etgtp) — fup €0S Qg sin Oy +

+fE cos Oy cos Dy, + fy(cos Oy sin @y, + sin Qg sin Oy cos y;,) —
—f& sin Og sin Oy sin Oy, + fglp + Bg; (36)

59


https://portal.issn.org/resource/ISSN/2522-9842

ISSN 2719-6410 Political Science and Security Studies Journal, Vol. 2, No. 3, — 2021

oV

v
Ny =—fy =V, ?N—vE (5—F\;E—u COS(05(p+VEESeC2 POP) — OV, EN_

. Y .
—oVe (2usin ¢+EEtggo) + fvy cos @, cos @, — f. cosDsind, ) + (37)

+f,sin®g + fy 1y +By.

Here: fy,fg fup — projections of the
apparent acceleration of the aircraft on the
axis of the geographic trihedron; uy,ug -
accelerometer scale factor errors; By, Bg -
zero offset accelerometers;

As a result, we obtain 4 nonlinear
equations of horizontal errors of autonomous
INS (14), (15), (36) and (37). We see that these
equations are complex, so to use these
equations they need to be simplified.

2. Linear error models of autonomous INS.

Orientation error equation. In an ideal
system, the GSP accurately simulates a
reference trihedron and the axes closely
connected to the stabilized platform of the
instrument trihedron x,y,z, are parallel to
the axes of the reference trihedron x;; y;,.2;; .
Axes of the instrument trihedron x,y,z,
coincide with the axes of sensitivity of
gyroscopes in their neutral position (angles of
precession are zero).

In real systems, the absolute angular
velocities of the reference and instrument
trihedron will be inconsistent at small angles
®p, Dy, Py, Which change over time and
characterize the errors of orientation of the
GSP. Corners @, @, determine the errors of
the instrument vertical, and the angle @, -
error in azimuth orientation of the platform.

The matrix of transition from the
navigation coordinate system to the platform
coordinate system has the form (taking into
account the small number of angles
CDEI cI)Nrcl)up) [6]:

1 Dy —DOy
Clz,)L =[O 1 @ |, (38)

oaw_n

where “p” - platform trihedron; “LL” -
geographical trihedron. The linear equations
of INS orientation errors are based on the

relation:
WEg WEg 0P
[“)N] =Ch [“)N + | @n | (39)
Duply, Duply, [ Qup

The first term is responsible for the skew of
the platform SC relative to the navigation SC,
the second — for departure errors.

Substitute (38) into (39) and obtain a
system of equations in scalar form:

P _ _LL LL LL ¥
o =g +oy P, -Dyo, +D

o =0y + a)u"p"CDE —(Dupa)'E'L +d_ . (40)

P _ LL LL LL ¥
O, =0y + O DO, —D.wy +CI)up

Let's find out the reasons of difference w?
i wh:

P LL _ _.dr
g —wz =0 +Awg

of — o5 = oy +Ao, (41)
P LL _ .dr

Oy — Oy =0y + A0,

where @@ drift of the computing

platform; Aw; - errors in calculating platform
control signals w;:

Ao, =— Ny
R
VAR
Aw, :E—usm Pop . (42)
Aw,, = é\FgE +UCoS (/)5¢)+\%sec2 )

Substitute (41), (42) into (40) and obtain:
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. ov
O + wyDyp — Oywyy = ——+ wdr
- 8 .
Oy — wWgDyp + Ppwyy = % —using dp + w¥ . (43)

((Dw + wyOy — Orwy = %tg(p + (ucos ¢ + %Esecz ®)op + a)ff{)

The system of equation (43) describes the Substitute (38) into (44) and obtain a
errors of the orientation of the platform in the system of equations in scalar form:
horizon and in azimuth.
P_qll _ oLl _alL
Equation of errors of horizontal a ?E aNLLCDUP a“‘il_(DN B+ .(45)
accelerometers. Linear error equations of ay —ay =-ag ®, +a, P +By +ayu,

horizontal INS accelerometers are based on

; p LL
the relation [7]: Difference a; from a;™ due to the values

6vg, dvy and errors in the calculation of

ag ac B ag - e Coriolis amendments, which are determined
a, | =Cl'la, | +|By |+|ay - | (44) by varying the nominal values of these
amendments. Finally, we get:
aup p aup LL Bup a'up'luup
where Bgn,up - zero offset
accelerometers; u; - accelerometer scale

factor errors; agyyp — projections of the

apparent acceleration on the axis of a

geographical trihedron.

( 0V = ay@yp — ayp @y + Bg + agup + (Lusing + 1;TEL“ggo)Sv,\, +
8

+vyucos ¢ + %tg(pv,\, + (ucos ¢ + 1%sec2 P)vnO@

. ) (46)
vy = —ag@Qyp + 4y @ + By + ayuy — Cusing + %Etg‘P)(st -

\—VEucos ¢ 5o — % tgpvg — (ucos ¢ + %Esecz PVl

where
SAak = Qusing + %Etg(p)SvN + vyucos @ + %tggov,v + (ucos o + %Esecz P)vnoQ;

8Aa§ = —(Qusing + %E tgp)ovy —vgucos @ d¢ — % tgovg — (ucos ¢ + %Esecz PVl -
errors from the calculation of Coriolis corrections.

In addition, the two connection equations Equations (43), (46) and (47) make up the
have the form [8]: system of equations of INS errors:
. 5171\]
09 = K (47)
5 SVE VE *
04 = Rcos @ Rcos ¢ tg(p&p
. Svy ar
1)CDE + chDup - wupmN = _T + wE
ov

2)Py — WDy — Wyp P = TE —using 5 + w¥;

. Svg Ve ar
3Dy + WOy — Wy O = Ttggo + (ucos ¢ + 7 Se¢ P)6p + wyy;
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v

4)6Vg = ayDQyp — Ay Oy + agpg + bg + 2using + FEtg(p)SvN +
dvg Vg,

vyucos @ 5@ + = tgovy + (ucos o + & Se¢ P)vNOQ;

%
5)6vy = —ag®yp + ayp@p + aypiy + by — Qusing + ?Etg(p)SvE -

Svg Vg,
—VgU COS P 6 — Ttg(va —(ucos¢p + & Se¢ ©)VEdQ;
Svy
6)0p = —;
)0 =—
. v v
7)61 = ——= = tgpso.

+ t
Rcose Rcose

We write down the system of INS error equations in discrete form and get:

(DE - CDE 6171\]
1) —k+1T k + a)NkCDupk — U)upkka = - R - + wgr;
(DN - (DN 6UE .
2) k+1T £ — Wy, Pup, — Oup, Pn, = R *—usin Qo + wlc\ilr;
) ) v ov
3) upk+1T UPk wg, @, — 0y, P, = (ucosp + %sec2 @)@y + %tg(p + 0)%;
6Ek+1 — 6Ek [
4) — 7 = an, Qup,, — Qup, Pn, + A e + bg + vyucos ¢ 5, + (2using
+ = tg0)8VN, +—Etgeuy + (ucos ¢ + - sec’ P)ondP
6UN - 51)N SvE
5) k+1T ‘= — g, Pup,, + Qup, P + an iy + by — Tktg(va -

% %
—(using + FEtgga)5ka — vgucos 6 ¢ — (ucos ¢ + FEsec2 P)VESPy;

6(pk+1 - 6()0Nk 8ka .

6) T "R’
(SAk+1 - 8Ak 6UEk vE
7) T " Rcosg + R cos @ tgPOPi-

Let's rewrite the system of INS error equations in matrix form:

Xp = FXp—q + Wy_q,
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_wE -
Dy
where x, = | §vg
dvy
6¢p
LA g
1 To, -To, 0
T
-Ta, 1 T, 7
T
To, -To. 1 —tge
R
T
F=| O -Ta,, Tay 1+Etg(va
Ta, 0 —Ta. —2T(25in+VEEtg(p)
0 0 0 0
0 0 0 T
| Rcos¢

In practice, when considering horizontal
channels of information, as a rule, simplified
equations of errors of autonomous INS are
used. At the same time, we neglect cross-links
and errors from calculation of Coriolis
corrections, and then we can write down the
equation of errors of INS separately for each
horizontal information channel:

- East Channel:

6vg = —gOy + ayDyp + Bp + pgag
Oy = % + 0§’
O = —Bwd¥ + Amw
- North Channel:

. (48)

86Uy = gOp — ag@yp + By + Unay
y = S
O = =

o3 = —Bod + A\/2pw

Here: o, w%" - projections of the GSP

drift velocity on the axis of the geographical

+ wdr . (49)

ovg ,11, —Tyg
X = G)N F == 1
dr R
WN 1 0 0

yWg—1 =

T, lr :
T. 0
T.0%
T.ag.ug + T.bg ’
T.ay.uy +T.by

0
-0 dr-1
_1 0 0
R
0 —Tusing 0
VE 2
0 T(u003¢+Esec ) 0
: Ve Vi,
T(2usm¢)+Etg(p) T(2vNu005¢+Fsec p) 0]
V2
1 —T(EEseczgo+2vEu005(p) 0
T 1 0
R
0 NVe 14 1
Rcosg

trihedron; A - root mean square deviation of
random drift; 8 — the average frequency of
random changes in drift; w — white noise.

Equations (48) and (49) include two
components: stationary (Schuler's), which
contains terms g@g, g®y, Bg, By, which are
independent of the motion of objects and
non-stationary, which contains members
anDyp, LA, ApDyyp, Uyay and depends on
the movement of objects. Consider the
stationary equations of INS errors (Bromberg
P. V., 1979; Salychev 0O.S., 2012; Neusypin
K.A., 2009):

- East Channel:

6vg = —g®y + By

. 5
by ==F+ off (50)
O = —Bwi + AJ2Bw
Rewrite equation (50) in matrix form:
X = FXp_q + Wiy, (51)
where
TBg
yWig—1 = 0
TA\ 28w
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- North Channel:
61.71\] = gwE + BN

(SUN

Op = - F+of (52)
0% = —Bw¥ + AJ2Bw
Suy 1T Tg
xk = wE ,F =|—— 1
dr R
WE Iy 0 0

Rewrite equation (52) in matrix form:

X = FXp_qg + Wiy, (53)

where
0 TBy
T yWig-1 = 0 .
1-Tp rayepwl,

Thus, linear models of INS errors in discrete form are obtained, which are used later in the

development of algorithms.

Conclusions

1. Linear and nonlinear mathematical models
of INS errors are considered. Depending on the
requirement for accuracy and time of
calculation of navigation parameters, different
models of INS errors are selected.

2. It is advisable to use a linear mathematical
model because of its simplicity, while the
calculation time is quite short.

3. Currently, with the development of
modern computing technologies, there are
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